Lista 4

4.1 Seja o sistema incerto contínuo no tempo

$$\dot{x} = A(\alpha)x$$
,

sendo $A(\alpha)$ uma matriz politópica, isto é,

$$A(\alpha) = \sum_{i=1}^{N} \alpha_i A_i, \quad \alpha \in \Lambda_N$$

cujos vértices $A_i, i=1,\ldots,N$ são conhecidos e Λ_N é o simplex unitário dado por

$$\Lambda_N \triangleq \left\{ \xi \in \mathbb{R}^N : \sum_{i=1}^N \xi_i = 1, \ \xi_i \ge 0, \ i = 1, \dots, N \right\}$$

Elabore uma rotina em Matlab que trace o lugar das raízes da matriz $A(\alpha)$ testando diversos valores de α (malha fina). A rotina deve receber como entrada as matrizes A_i em formato célula $(A\{i\})$. Escolha de uma maneira sistemática um número adequado de pontos α para que a "nuvem" represente o melhor possível todos os autovalores de $A(\alpha)$. Plote também os eixos real e imaginário. Como saída, a rotina deve fornecer o máximo valor da parte real dos autovalores, bem como o ponto α^* associado.

- **4.2** Faça um programa para gerar matrizes politópicas $A(\alpha)$ Hurwitz estáveis. Dados n (número de estados), N (número de vértices) e uma distância máxima do eixo real d>0, o programa deve retornar uma matriz A contendo os vértices A_i em formato celular. O máximo valor da parte real dos autovalores de $A(\alpha)$ deve ser aproximadamente igual a -d.
- **4.3** Gere matrizes politópicas estáveis estáveis para $n=2,3,4,\ N=2,3,4$ usando o programa de geração de politopos estáveis com d=0.05 e plote os lugares das raízes.
- **4.4** Faça um programa no Matlab para traçar o diagrama de valores singulares de um sistema incerto contínuo no tempo $(A, B, C, D)(\alpha) \in \mathcal{D}$ com

$$\mathcal{D} = \left\{ (A, B, C, D)(\alpha) : (A, B, C, D)(\alpha) = \sum_{i=1}^{N} \alpha_i (A, B, C, D)_i \right\}, \quad \alpha \in \Lambda_N$$

cujos vértices $(A, B, C, D)_i$, i = 1, ..., N são conhecidos. O programa deverá testar uma malha fina de valores de α , usando a mesma lógica desenvolvida no primeiro exercício. A rotina deve receber como entrada as matrizes A, B, C e D em formato célula. Para um α fixo, os valores singulares podem ser calculados pela rotina sigma do Matlab. Como saída, a rotina deve fornecer o máximo valor singular (norma \mathcal{H}_{∞} de pior caso) bem como o valor de α^* associado.

- **4.5** Adapte o código desenvolvido no exercício anterior para tratar a norma \mathcal{H}_2 . Para um α fixo, a norma \mathcal{H}_2 pode ser calculada usando o comando norm(·, 2) do Matlab.
- **4.6** Estenda o código desenvolvido no primeiro exercício para tratar matrizes politópicas associadas a sistemas discretos no tempo, isto é

$$x(k+1) = A(\alpha)x(k),$$

Além dos eixos real e imaginário, o círculo de raio unitário centrado na origem também deverá ser plotado. Como saída, a rotina deve fornecer o máximo valor absoluto dos autovalores, bem como valor de α^* associado.

4.7 Faça um programa para gerar matrizes politópicas estáveis no caso discreto. Dados n (número de estados), N (número de vértices) e uma tolerância 0 < d < 1, o programa deve retornar uma matriz A

(formato célula). O máximo valor absoluto dos autovalores de $A(\alpha)$ deve ser aproximadamente igual a d.

- **4.8** Gere matrizes politópicas estáveis no caso discreto para $n=2,3,4,\ N=2,3,4$ usando o programa de geração de politopos estáveis com d=0.95 e plote os lugares das raízes.
- **4.9** Faça um programa no Matlab para traçar o diagrama de valores singulares de um sistema incerto discreto no tempo $(A, B, C, D)(\alpha) \in \mathcal{D}$ (varrendo a frequência ω de $-\pi$ a π) cujos vértices $(A, B, C, D)_i$, $i = 1, \ldots, N$ são conhecidos. A rotina deve receber como entrada as matrizes A, B, C e D em formato célula. Como saída, a rotina deve fornecer o máximo valor singular (norma \mathcal{H}_{∞} de pior caso) bem como o valor de α^* associado.
- **4.10** Adapte o código desenvolvido no exercício anterior para tratar a norma \mathcal{H}_2 .
- 4.11 Seja o sistema incerto na forma afim

$$\dot{x} = (A_0 + \theta_1 A_1 + \dots + \theta_m A_m) x$$

sendo A_j , $j=0,\ldots,m$ matrizes dadas e $-1 \leq \theta_j \leq 1$, $j=0,\ldots,m$. Desenvolva uma rotina que converta a matriz $A(\theta)$ numa matriz politópica $A(\alpha)$. A rotina deve retornar os vértices da matriz politópica (estrutura celular), com $N=2^m$ considerando

- (a) m=1.
- (b) m=2.
- (c) Caso geral. Note que a combinação dos extremos de todos os θ_j nada mais é do que o resultado do produto cartesiano $\theta_1 \times \theta_2 \times \cdots \times \theta_m$ em que cada θ_j assume apenas dois valores, isto é, seus valores mínimo e máximo. A obtenção dessa combinação de valores pode ser obtida usando a rotina cartesian_product do Matlab.
- 4.12 Seja o sistema contínuo no tempo

$$\dot{x} = (A + \Delta A)x,$$

tal que $\Delta A'\Delta A \leq \gamma I$. Usando o lema dos produtos cruzados, isto é

$$X'Y + Y'X \le \frac{1}{\epsilon}X'X + \epsilon Y'Y, \qquad \epsilon > 0$$

apresente uma LMI que teste a estabilidade do sistema por meio da existência de uma função de Lyapunov v(x) = x'Px tal que $\dot{v}(x) < 0$ ao longo das trajetórias do sistema.

- 4.13 Sejam os problemas de otimização
- P1: Encontre $P \in \mathbb{R}^{n \times n}$ tal que A'P + PA < 0, P > 0;
- P2: Encontre $P(\alpha) \in \mathbb{R}^{n \times n}$ tal que

$$A(\alpha)'P(\alpha) + P(\alpha)A(\alpha) < 0, \ P(\alpha) > 0, \forall \alpha \in \Lambda_N$$

sendo Λ_N o simplex unitário de dimensão N. Comente sobre as diferenças entre os dois problemas de otimização.