# IA881 – Otimização Linear

Aula: Introdução à Programação Linear

Ricardo C. L. F. Oliveira

Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas

1º Semestre 2023

# Tópicos

- 1 Introdução
- 2 Terminologia
- 3 Hipóteses
- Manipulações Usuais
- Exemplos de Formulação
- 6 Solução Geométrica
- Soluções

#### Introdução I

- Programação Linear: trata da busca pelo melhor (menor ou maior) valor que uma função linear assume (chamado de valor "ótimo") quando suas variáveis são restritas por igualdades e desigualdades lineares.
- Caso a função ou as restrições sejam não lineares, os métodos apresentados ao longo do curso não se aplicam.

#### Histórico

- George B. Dantzig 1947.
- L. V. Kantorovich 1939 (1959).
- Programação Linear" → T. C. Koopmans (1948).
- Método Simplex → 1949.
- Importância do método simplex: (1) modela problemas importantes e complexos; (2) Eficiência computacional.

### O Problema de Programação Linear I

Considere o seguinte problema de programação linear

sendo que  $c_1x_1 + \cdots + c_nx_n$  é a função objetivo a ser minimizada e cujo valor é denotado por z. Os coeficientes  $c_i$ ,  $i=1,\ldots,n$  são valores *conhecidos* e  $x_i$ ,  $i=1,\ldots,n$  são as variáveis de decisão a serem determinadas.

A desigualdade  $\sum_{j=1}^n a_{ij} x_j \ge b_i$  é a *i*-ésima restrição. Os coeficientes  $a_{ij}$ ,  $i=1,\ldots,m,\ j=1,\ldots,n$  são chamados de coeficientes tecnológicos e, quando agrupados, dão origem à matriz de restrição **A**, dada por

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

## O Problema de Programação Linear II

O vetor coluna **b**, composto pelas componentes  $b_i$ ,  $i=1,\ldots,m$  é chamado como o vetor do lado direito. As restrições  $x_i \geq 0, \ i=1,\ldots,n$  são chamadas de restrições de não negatividade.

Um conjunto de valores das variáveis  $x_i \ge 0$ , i = 1, ..., n que satisfaz todas as restrições é chamado de ponto factível ou solução factível. O conjunto de todas as soluções factíveis constitui a região factível ou espaço factível.

A partir da terminologia apresentada, o problema de programação linear pode ser estabelecido como:

#### Problema de Programação Linear

Entre todas as soluções factíveis, encontre uma que minimize (ou maximize) a função objetivo.

## O Problema de Programação Linear III

Exemplo:

min 
$$z = 2x_1 + 5x_2$$
  
s. a  $x_1 + x_2 \ge 3$   
 $-x_1 - 2x_2 \ge -8$   
 $x_i \ge 0, i = 1,...,2$ 

O problema tem duas variáveis de otimização e a função objetivo a ser minimizada é  $2x_1 + 5x_2$ . As restrições e a região factível são mostradas na Figura 1. O problema de otimização consiste em encontrar um ponto dentro da região factível de forma que a função objetivo assuma seu menor valor possível.

## O Problema de Programação Linear IV

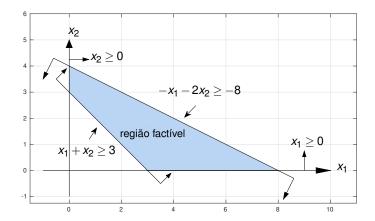


Figura 1: Região factível e restrições do exemplo.

R. C. L. F. Oliveira IA881 - Otimização Linear

7/33

## Hipóteses da Programação Linear

- Proporcionalidade: Para uma dada variável  $x_j$ , sua contribuição para o custo e para a i-ésima restrição é  $c_j x_j$  e  $a_{ij} x_j$ , respectivamente. Se sua quantidade é, por exemplo, dobrada, o efeito é proporcional tanto no custo quanto na restrição. Em outras palavras, não há economia (ou desconto) em usar uma maior quantidade da variável  $x_j$ .
- Divisibilidade: Valores não integrais são permitidos às variáveis.
- Determinístico: Os coeficientes  $c_i$ ,  $b_i$  e  $a_{ij}$  são conhecidos deterministicamente.
- Em todos os problemas de programação linear considerados ao longo curso, todas as hipóteses anteriores estão implicitamente assumidas.
- Embora o modelo de programação linear apresentado possa parecer limitado (pouco abrangente), o mesmo é amplamente utilizado para modelar problemas do mundo real, fornecendo resultados satisfatórios, além de prover análises mais sofisticadas do que simplesmente fornecer valores para as variáveis de decisão.

## Transformado Desigualdades em Igualdades I

A restrição

$$\sum_{j=1}^n a_{ij}x_j \ge b_i$$

pode ser transformada em uma equação introduzindo uma variável de excesso (em inglês, surplus variable)  $x_{n+1}$ , levando a

$$\sum_{j=1}^{n} a_{ij} x_j - x_{n+1} = b_i, \quad x_{n+1} \ge 0$$

■ De modo similar, a restrição

$$\sum_{i=1}^n a_{ij} x_j \le b_i$$

pode ser transformada em uma equação introduzindo uma variável de folga (em inglês, slack variable)  $x_{n+1}$ , levando a

$$\sum_{j=1}^{n} a_{ij} x_j + x_{n+1} = b_i, \quad x_{n+1} \ge 0$$

## Transformado Desigualdades em Igualdades II

Finalmente, uma equação na forma

$$\sum_{j=1}^n a_{ij} x_j = b_i$$

pode ser transformada em duas desigualdades

$$\sum_{j=1}^n a_{ij}x_j \leq b_i, \qquad \sum_{j=1}^n a_{ij}x_j \geq b_i$$

embora esse procedimento seja menos usual.

## Variáveis não negativas

- Na maioria dos problemas práticos as variáveis estão associadas a quantidades físicas, ou seja, assumem valores não negativos.
- O método Simplex, que estudaremos mais à frente, foi projetado para tratar apenas variáveis não negativas.
- Caso em um problema particular uma variável  $x_j$  seja irrestrita (assume valores positivos e negativos), então a mesma pode ser substituída por

$$x_i'-x_i'', \quad x_i'\geq 0, \quad x_i''\geq 0$$

 Caso tenhamos múltiplas (k) variáveis irrestritas, podemos usar as transformacões

$$x_j = x_j' - x'', \quad x_j' \ge 0, \quad x'' \ge 0, \quad j = 1, \dots, k$$

Note que temos apenas uma variável x'', representando o valor mais negativo possível entre as k variáveis.

R. C. L. F. Oliveira IA881 - Otimização Linear 11/33

## Minimização e Maximização

 Uma manipulação usual é transformar um problema de maximização em um problema de minimização e vice-versa. Note que, sobre qualquer região

$$\max \sum_{j=1}^n c_j x_j = -\min \sum_{j=1}^n -c_j x_j$$

Portanto, basta multiplicar os coeficientes da função objetivo por -1 para transformar um problema de maximização (minimização) em um problema de minimização (maximização).

■ Terminada a otimização, o valor ótimo da função objetivo original é o valor ótimo da função objetivo do problema modificado multiplicado por -1.

## Formas padrão e canônica

A tabela a seguir mostra as formas padrão (standard) e canônica (canonical) de programação linear para problemas de minimização e maximização.

| minimização<br>n |           | maximização                  |  |  |
|------------------|-----------|------------------------------|--|--|
|                  | n         | <u>n</u>                     |  |  |
|                  | main l'ov | many \ \ \ \ \ \ \ \ \ \ \ \ |  |  |

forma padrão

forma canônica

| IIIIIIIIZação |                                   |                | maximização |                                   |                |  |
|---------------|-----------------------------------|----------------|-------------|-----------------------------------|----------------|--|
| min           | $\sum_{j=1}^{n} c_j x_j$          |                | max         | $\sum_{j=1}^{n} c_j x_j$          |                |  |
| s. a          | $\sum_{i=1}^n a_{ij} x_j = b_i,$  | $i=1,\ldots,m$ | s. a        | $\sum_{i=1}^n a_{ij} x_j = b_i,$  | $i=1,\ldots,m$ |  |
|               | $x_j \geq 0$ ,                    | $j=1,\ldots,n$ |             | $x_j \geq 0$ ,                    | $j=1,\ldots,n$ |  |
| min           | $\sum_{j=1}^{n} c_j x_j$          |                |             | $\sum_{j=1}^{n} c_j x_j$          |                |  |
| s. a          | $\sum_{j=1}^n a_{ij}x_j \ge b_i,$ | $i=1,\ldots,m$ | s. a        | $\sum_{j=1}^n a_{ij}x_j \le b_i,$ | $i=1,\ldots,m$ |  |
|               | $x_j \geq 0$ ,                    | $j=1,\ldots,n$ |             | $x_j \geq 0$ ,                    | $j=1,\ldots,n$ |  |

## Notação matricial I

 Um problema de programação linear pode ser enunciado em termos de uma notação mais compacta. Por exemplo, o problema

min 
$$\sum_{j=1}^{n} c_j x_j$$
s. a 
$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, ..., m$$

$$x_j \ge 0, \qquad j = 1, ..., n$$

pode ser reescrito na forma (a notação  $(\cdot)^T$  denota transposição)

com os vetores

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix},$$

## Notação matricial II

e a matriz

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}, \ \mathbf{a}_i = \begin{bmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{bmatrix}, \quad \text{ou} \quad \mathbf{A} = \begin{bmatrix} \mathbf{a}^1 \\ \mathbf{a}^2 \\ \vdots \\ \mathbf{a}^m \end{bmatrix}, \ \mathbf{a}^i = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix}$$

Observação: A notação em que a matriz  ${\bf A}$  é descrita por vetores linhas  $({\bf a}^i)$  é menos usual.

Note que vetores e matrizes são apresentados em negrito.

## Etapas da Programação Linear

- A modelagem e análise de um problema de programação linear, em geral de qualquer problema de pesquisa operacional, evolui por meio de várias etapas.
  - Formulação do problema.
  - Construção do modelo matemático.
  - Solução do modelo (aplicação de técnicas de otimização).
  - Testes e análises do modelo (com eventual restruturação).
  - Implementação.

## Planejamento de Produção I

■ Uma empresa produz sapatos e botinas. As matérias primas (e suas respectivas quantidades disponíveis) e o lucro em função da produção dos calçados são mostradas na tabela abaixo. O objetivo é saber qual é a proporção de fabricação entre sapatos e botinas que maximiza o lucro da empresa.

|               | prod    | utos    |                 |
|---------------|---------|---------|-----------------|
| matéria prima | sapatos | botinas | disponibilidade |
| couro         | 2       | 1       | 8               |
| borracha      | 1       | 2       | 7               |
| cola          | 0       | 1       | 3               |
| lucro (p./u.) | 1       | 1       |                 |

■ Formular a escolha da melhor proporção de fabricação de calçados em termos de um problema de programação linear.

## Planejamento de Produção II

■ Formulação matemática:

max 
$$z = x_1 + x_2$$
  
s. a  $2x_1 + x_2 \le 8$   
 $x_1 + 2x_2 \le 7$   
 $x_2 \le 3$   
 $x_i \ge 0, i = 1,...,2$ 

sendo que  $x_1$  ( $x_2$ ) é quantidade de sapatos (botinas) fabricados. A solução (geométrica) é apresentada mais adiante.

#### Problema da Dieta I

■ Estão disponíveis 5 tipos de alimentos, cada um contendo uma certa quantidade de nutrientes em termos de proteínas e sais minerais. Especificada a necessidade diária de nutrientes e o custo associado a cada tipo de alimento, deseja-se determinar qual é a dieta que atende a necessidade e apresenta o menor custo. Formular o problema em função dos valores apresentados na tabela abaixo.

|               | alimentos |    |    |    | necessidades |            |
|---------------|-----------|----|----|----|--------------|------------|
|               | 1         | 2  | 3  | 4  | 5            | nutrientes |
| proteínas     | 3         | 4  | 5  | 3  | 6            | 42         |
| sais minerais | 2         | 3  | 4  | 3  | 3            | 24         |
| custo         | 25        | 35 | 50 | 25 | 36           |            |

#### Problema da Dieta II

■ Formulação matemática do problema:

min 
$$z = 25x_1 + 35x_2 + 50x_3 + 33x_4 + 35x_5$$
  
s. a  $3x_1 + 4x_2 + 5x_3 + 3x_4 + 6x_5 \ge 42$   
 $2x_1 + 3x_2 + 4x_3 + 3x_4 + 3x_5 \ge 24$   
 $x_i \ge 0, i = 1, ..., 5$ 

■ Solução ótima:  $x_1 = x_2 = x_3 = 0$ ,  $x_4 = 2$  e  $x_5 = 6$ . Custo ótimo: 276.

#### Problema de Alocação I

■ Seja a região mostrada a seguir em que  $a_i$  é o número de assinaturas na área i, e  $b_j$  é capacidade de atendimento da central telefônica j. Problema: alocar os assinantes às centrais de modo a minimizar o custo de ligação assinante-central (é um subproblema da localização das centrais).

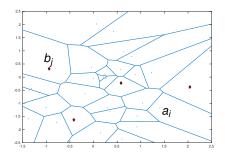


Figura 2: Planejamento de rede de telecomunicação.

### Problema de Alocação II

■ Seja  $x_{ij}$  o número de assinantes da área i conectado à central j e  $c_{ij}$  o custo para conectar o assinante da área i à central j.

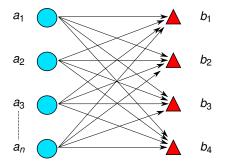


Figura 3: Ligações entre assinantes e centrais.

## Problema de Alocação III

■ Formulação de programação linear

$$\begin{array}{ll} \min & \sum\limits_{i}\sum\limits_{j}c_{ij}x_{ij} \\ s. \ a & \sum\limits_{j}x_{ij}\geq a_{i}, \quad \forall i \\ & \sum\limits_{i}x_{ij}\leq b_{j}, \quad \forall j \\ & x_{ij}\geq 0, \qquad \forall i, \forall j \end{array}$$

## Solução Geométrica I

- Considere um problema de minimização na forma de programação linear, com duas ou três variáveis de otimização, permitindo a visualização geométrica da região factível.
- Entre todos os pontos factíveis, queremos encontrar aquele que fornece o menor valor para  $z = c^T x$ . Note que todos os pontos que geram o mesmo valor de z, isto é, satisfazem

$$z = \sum_{i=1}^{n} c_i x_i$$

estão sobre um hiperplano (no caso 2D, sobre uma reta, no caso 3D, sobre um plano).

- No caso 2D, encontrar o valor ótimo de z pode ser visto como mover a reta  $c_1x_1 + c_2x_2 = z$  paralelamente a si mesma no sentido de diminuir o valor da função objetivo mas permanecendo dentro da região factível.
- No problema de minimização (maximização), a direção de movimento é -c (c).

#### Solução Geométrica II

- Na Figura 4, note que no ponto  $x^*$ , a reta  $c_1x_1^*+c_2x_2^*=z^*$  não pode ser mais movida na direção -c, pois ficaria fora da região factível. Assim conclui-se que  $x^*$  é uma solução ótima.
- Obviamente esta técnica é conveniente apenas a problemas de duas ou três variáveis, contudo, a técnica fornece alguns *insights* interessantes sobre o caso geral de programação linear. Por exemplo, como veremos mais adiante, se o problema de programação linear tiver uma solução ótima finita, então o problema também tem uma solução que é ponto extremo (vértice do poliedro), como na Figura 4.

## Solução Geométrica III

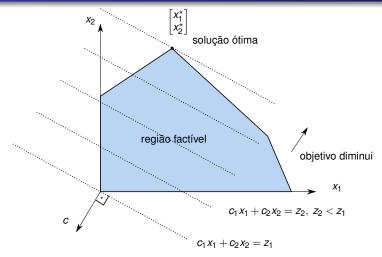
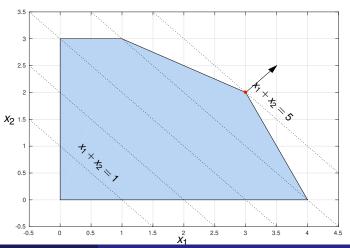


Figura 4: Solução Geométrica.

## Solução do Problema de Planejamento (Sapateiro)

■ Aplicando o método geométrico no problema de planejamento, temos a ilustração apresentada na Figura 5. O valor ótimo é z = 5 com  $x_1 = 3$  (sapatos) e  $x_2 = 2$  (botinas).



## Possíveis resultados de um problema de PL

- Um problema de programação linear pode fornecer um dos quatro tipos de resultados listados a seguir.
  - Solução ótima única.
  - Múltiplas soluções ótimas.
  - Função objetivo ilimitada.
  - Infactibilidade.

# Solução Ótima Única

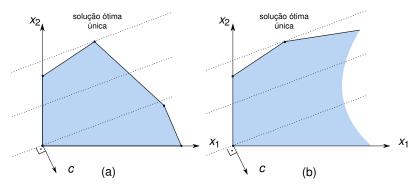


Figura 6: Soluções ótimas únicas; (a) região limitada; (b) região ilimitada.

## Soluções Múltiplas

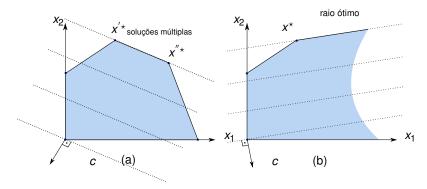


Figura 7: Soluções múltiplas; (a) região limitada; (b) região ilimitada.

## Função Objetivo Ilimitada

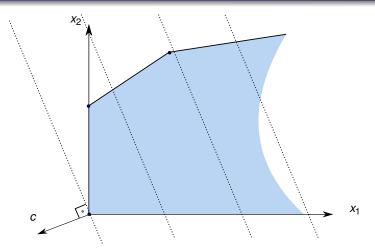


Figura 8: Função objetivo ilimitada. Os contornos da função objetivo podem se mover indefinidamente na direção -c, mantendo interseção com a região factível.

#### Problema Infactível

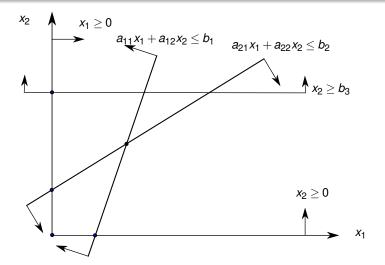


Figura 9: Solução infactível. O sistema de equações ou desigualdades que define a região factível é *inconsistente*.

R. C. L. F. Oliveira IA881 - Otimização Linear 32/33

#### Referências Bibliográficas



M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali.

Linear Programming and Network Flows.

Jonh Wiley & Sons, Hoboken, New Jersey, 4 edition, 2010.