IA881 – Otimização Linear

Aula: Caminho Mínimo (shortest path)

Ricardo C. L. F. Oliveira

Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas

1° Semestre 2019

Tópicos

1 Conceitos, Definições, Notações

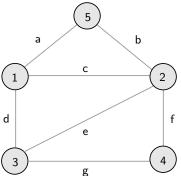
Caminhos mínimos

Conceitos, Definições, Notações I

Definição 1

Sejam N um conjunto de vértices e A um conjunto de arestas ligando os vértices $v \in N$. Define-se grafos como sendo G(N,A). n = |N| representa o número (cardinalidade) de vértices e m = |A| o número (cardinalidade) de arestas.

■ Observação: vértice = nó; aresta = ramo (não-orientado) ou arco (orientado)



- Nós={1,2,3,4,5}
- Arestas= $\{a, b, c, d, e, f, g\}$

Figura 1: Grafo não orientado.

Conceitos, Definições, Notações II

Uma alternativa para representar uma aresta é por meio da notação (x,y) com $x,y \in N$. Por exemplo, no grafo da Figura 1, a aresta b poderia ser representada por (2,5) ou (5,2). Caso a aresta seja direcionada (arco), convenciona-se que a primeira componente seja o vértice de origem e a segunda o vértice de destino.

Definição 2

Grafo orientado ou direcionado (não orientado ou não direcionado) – quando as arestas têm (não têm) orientação.

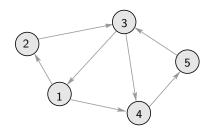


Figura 2: Exemplo de um grafo orientado.

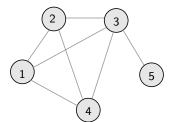


Figura 3: Exemplo de um grafo não orientado.

Conceitos, Definições, Notações III

Definição 3

Um grafo é dito ponderado (ou valorado) se suas arestas possuem custos (ou pesos) associados. Usa-se a notação c_{ij} (ou c(i,j)) para denotar o custo da aresta entre os vértices i e j.

Definição 4

 $G_s(N_s,A_s)$ é um sub-grafo de G(N,A) se $N_s\subseteq N$ e $A_s\subseteq A$ tal que se $(i,j)\in A_s \Rightarrow i,j\in N_s$. Um grafo $G_s(N_s,A_s)$ é um sub-grafo gerador de G(N,A) se $N_s=N$ e $A_s\subseteq A$.

Conceitos, Definições, Notações IV

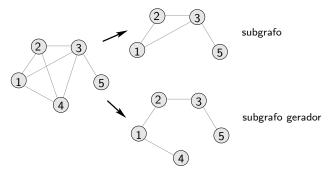


Figura 4: Exemplo de subgrafos (gerador e não gerador).

Conceitos, Definições, Notações V

Definição 5

Grau de um vértice é o número de arestas que incidem nele (no caso orientado, arcos que entram mais que saem).

Definição 6

Cadeia é uma sequência consecutiva de arestas em que todos os nós visitados são distintos. Exemplo: na Figura $2 - \{(2,3)(5,3)(4,5)(1,4)\}$.

Definição 7

Caminho é um caso particular de cadeia na qual os arcos têm os mesmos sentidos. Exemplo Figura $2 - \{(2,3)(3,1)(1,4)(4,5)\}$

Definicão 8

Comprimento de um caminho é a soma dos pesos (ou custos) das arestas do caminho.

Conceitos, Definições, Notações VI

Definição 9

Um grafo é dito ser conexo se sempre existe uma cadeia entre qualquer par de vértices.

Definição 10

Ciclo ou laço é uma cadeia fechada (termina no nó que iniciou). Exemplo na Figura $2 - \{(3,1)(1,4)(3,4)\}$

Definição 11

Circuito (ciclo direcionado) é um caminho fechado. Exemplo na Figura $2 - \{(2,3)(3,1)(1,2)\}$

Definição 12

Uma árvore é um grafo conexo que não contém ciclos.

Conceitos, Definições, Notações VII

■ Exemplos de árvore obtidas a partir do grafo da Figura 2: (1) removendo-se as arestas (2,3), (1,4) e (5,3); (2) removendo-se as arestas (1,4), (3,1) e (3,4); Existem outras possibilidades.

Motivação

• Qual é o menor caminho entre o Terminal Central de Campinas e a FEEC?

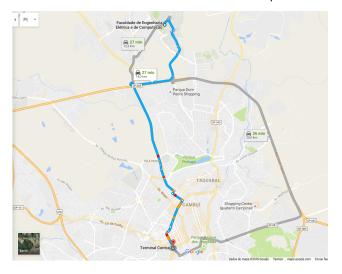


Figura 5: Fonte: Google maps.

Formulação matemática

■ Se consideramos as ruas como arestas e os cruzamentos das ruas como vértices, podemos formular o problema de encontrar o caminho mínimo (em inglês — shortest path) usando a teoria de grafos.

Problema

Dado um grafo G(N,A), orientado e com peso nas arestas, encontrar o caminho mínimo (de menor comprimento) entre os vértices $s \in N$ (origem) e $d \in N$ (destino).

- Intuitivamente as arestas denotam distâncias, mas outras variáveis poderiam ser consideradas, por exemplo, tempo.
- Inúmeras aplicações: Rotamento de veículos, planejamento de tráfego urbano, navegação robótica, roteamento em telecomunicações, e muitas outras.

Hipóteses e Propriedades I

Assume-se que o grafo G(N,A) não possui ciclos com comprimento negativo ("ciclo negativo"). Caso contrário não é possível determinar o caminho mínimo pelos algoritmos apresentados.

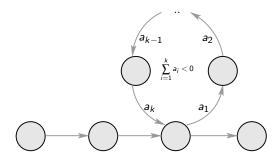


Figura 6: Grafo com ciclo negativo.

Hipóteses e Propriedades II

- O caminho mínimo entre dois vértices pode não ser único. Nesse caso qualquer um deles servirá como solução.
- Também usaremos a seguinte hipótese simplificadora: existe um caminho mínimo entre os vértices s e d.
- Tipos de problemas de caminho mínimo comumente investigados
 - Encontrar o caminho mínimo entre um nó origem (single-source) e todos os outros (com ou sem arcos de pesos negativos).
 - Encontrar o caminho mínimo entre todos os nós e um nó destino (single-sink).
 - Entre todos os pares de vértices.
- Essas generalizações possuem algoritmos eficientes (complexidade polinomial). Trabalharemos com o *single-source*.

14/35

Objetivo e estrutura de dados I

Definição 13

Dado um grafo G(N,A) orientado com pesos nas arestas e um vértice de origem s, uma árvore de caminhos mínimos (em inglês shortest-paths tree) é um subgrafo contendo s e todos os vértices alcançáveis a partir de s que forma uma árvore direcionada com raiz em s tal que todo caminho da árvore é um caminho mínimo no grafo.

Objetivo

Encontrar o caminho mínimo entre o vértice de origem s e todos os outros vértices, produzindo como solução uma árvore de caminhos mínimos.

- \blacksquare A árvore de caminhos mínimos pode ser representada por dois vetores indexados pelos vértices v
 - dist[v]: armazena o comprimento do caminho mínimo entre s e v.
 - prev[v]: armazena a última aresta do caminho mínimo entre s e v.

Objetivo e estrutura de dados II

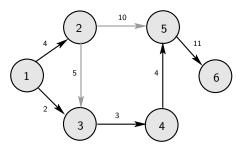


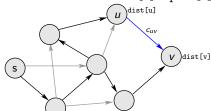
Figura 7: Árvore de caminhos mínimos (arestas pretas).

V	prev[v]	dist[v]
1	_	0
2	(1,2)	4
3	(1,3)	2
4	(3,4)	5
5	(4,5)	9
6	(5.6)	20

Conceito de relaxação

Algorithm 1 Relaxação

- 1: Seja um arco (u, v) e seu custo associado c_{uv}
- 2: **se** dist[v] > dist[u] + $c_{\mu\nu}$ **então**
- 3: $\operatorname{dist}[v] \leftarrow \operatorname{dist}[u] + c_{uv}$
- 4: $prev[v] \leftarrow (u, v)$
- 5: **fim se**
- Se a aresta (u, v) fornece um caminho para o vértice v via o vértice u, atualiza-se os vetores dist[v] e prev[v].



 As arestas em preto representam o estado atual de prev[·]

Condições de otimalidade I

Teorema 1

Seja G(N,A) um grafo orientado e ponderado. O vetor dist[u] fornece as distâncias dos caminhos mínimos entre $u \in N$ e o vértice de origem se e somente se as seguintes condições forem satisfeitas

- dist[s]=0.
- Para cada vértice u, dist[u] é o comprimento de um caminho de s até u.
- Para cada arco (v, w) com custo c_{vw} , tem-se que dist $[w] \le \text{dist}[v] + c_{vw}$.
- Prova: (Necessidade): Suponha que para um vértice v, associado a uma aresta u(v,w), temos $dist[w] > dist[v] + c_{vw}$. Então essa aresta forneceria um caminho da origem s para w com um comprimento menor, o que é uma contradição à otimalidade do caminho.
- (Suficiência): Suponha que o caminho mínimo entre s e w passe pela seguinte sequência de vértices: $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k = w$, com custo ótimo dado

Condições de otimalidade II

por $c^\star=c_{01}+c_{12}+\cdots c_{k-1k}$. Aplicando as condições de otimalidade em todos os vértices do caminho, tem-se

$$dist[v_k] \le dist[v_{k-1}] + c_{k-1k}$$

 $dist[v_{k-1}] \le dist[v_{k-2}] + c_{k-2k-1}$
 $\vdots \le \vdots$
 $dist[v_2] \le dist[v_1] + c_{12}$
 $dist[v_1] \le dist[v_0] + c_{01}$

Somando as desigualdades e substituindo $dist[v_0] = 0$, tem-se

$$dist[v_k] = dist[w] \le c_{01} + c_{12} + \cdots + c_{k-1k} = c^*$$

Como dist[w] não pode ser menor que o valor ótimo c^* , a restrição é atendida na igualdade.

Algoritmo genérico

Algorithm 2 Algoritmo genérico para caminho mínimo.

- 1: Inicialize dist[s]=0 e dist[v]=∞ para os outros vértices
- 2: enquanto as condições de otimalidade não forem satisfeitas faça
- 3: Relaxe alguma aresta
- 4: fim enquanto

Proposição

O algoritmo genérico determina a árvore de caminhos mínimos a partir de s.

- Elementos da prova: O vetor dist[v] sempre armazena o comprimento de um caminho (simples) de s até v; Uma relaxação pode apenas diminuir o valor de dist[v]; O número de diminuições em dist[v] é finito (uma para cada possibilidade de caminho entre s e v).
- O algoritmo genérico não especifica a ordem na qual as arestas são relaxadas.

Algoritmo de Dijkstra I

Edsger Wybe Dijkstra.

- Em 1959 Dijkstra (1930–2002) sugeriu um algoritmo de rotulação para caminhos em grafos com arcos não negativos, utilizando indução e ajuste, eficiente e de fácil implementação computacional.
- Grafo deve ser conexo.
- Funciona em grafos direcionados e não direcionados
- Complexidade: $\mathcal{O}(n^2)$ (implementações mais eficientes: $\mathcal{O}(m \log n)$)

Algoritmo de Dijkstra II

"Assim como Prim está para a árvore geradora mínima, Dijkstra está para árvore de caminhos mínimos".

Algorithm 3 Algoritmo de Dijkstra.

- 1: Inicialize dist[s]=0 e dist[v]=∞ para os outros vértices
- 2: enquanto a árvore não estar completa faça
- 3: Insira na árvore o vértice *v* com menor dist[v]
- 4: Relaxe os arcos que saem de v
- 5: fim enquanto
- Sobre o critério "a árvore não estar completa", podemos considerar: (1) o número de vértices na árvore não for n; (2) todos os vértices fora da árvore não terem valor finito em dist[v].

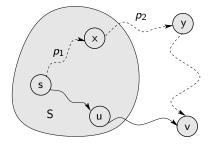
Proposição

O algoritmo de Dijkstra determina a árvore de caminhos mínimos a partir de s para qualquer grafo ponderado com pesos não negativos nas arestas.

Algoritmo de Dijkstra III

- Prova: Cada aresta (v,w) do grafo é relaxada apenas uma vez (quando o vértice v está sendo relaxado), deixando $\mathtt{dist}[w] \leq \mathtt{dist}[v] + c_{vw}$. A desigualdade se mantém até o término da execução por dois motivos: (1) $\mathtt{dist}[w]$ não pode aumentar (monotonicamente decrescente); (2) $\mathtt{dist}[v]$ não vai mudar pois, a cada passo da execução, escolhe-se o $\mathtt{dist}[v]$ de menor valor para ser relaxado e os c_{vw} são não negativos. Como conclusão, após o término da execução, as condições de otimalidade são satisfeitas.
- Outra interpretação:

Algoritmo de Dijkstra IV



Exemplos I

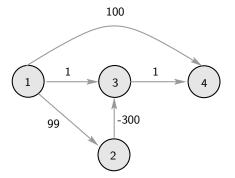


Figura 8: Grafo exemplo para o algoritmo de Dijkstra (vai falhar).

Exemplos II

Adiantaria somar uma constante positiva a todas as arestas (de modo que todas fiquem não negativas)?

Não, o caminho mínimo poderia mudar.

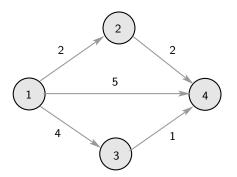


Figura 9: Grafo exemplo para o algoritmo de Dijkstra.

Exemplos III

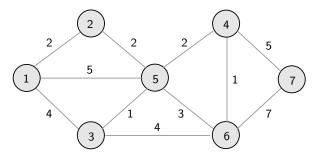


Figura 10: Grafo não direcionado para o algoritmo de Dijkstra.

Algoritmo de Bellman-Ford

Lester Randolph Ford Jr.

Richard Ernest Bellman

- Publicado em 1956 por Ford, em 1958 por Bellman e em 1957 por Edward F. Moore. Também conhecido como algoritmo de Bellman-Ford-Moore.
- Menos eficiente do que Dijkstra, mas trata arestas com pesos negativos. É capaz de detectar ciclos negativos.
- Complexidade $\mathcal{O}(nm)$

Exemplo motivador

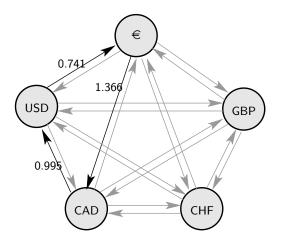
■ Dada as moedas e as taxas de câmbio, qual é o melhor caminho para converter mil dólares americanos em dólares canadenses? Opção 1: $1000\ USD \rightarrow 1005\ CAD$. Opção dois: $1000\ USD \rightarrow 741\ € \rightarrow 1012.21\ CAN$ (mais vantajosa).

Moeda	USD	€	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.005
€	1.349	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.942	0.698	0.619	1	0.953
CAD	0.995	0.732	0.650	1.049	1

■ Problema interessante: Arbitragem financeira: $1000\ USD \rightarrow 741 \ € \rightarrow 1012.21\ CAN \rightarrow 1007.14\ USD$. Lucro de 7.14 dólares!

Modelagem via grafos

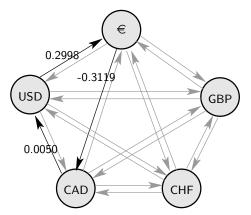
■ Vértices: moedas; Arestas: transação de câmbio (peso igual à taxa de câmbio)



■ Como modelar como um problema de detecção de ciclos negativos?

Modelagem via grafos

■ Estratégia: Tomar o logaritmo do pesos das arestas e trocar o sinal. Assim a multiplicação de pesos transforma-se em adição e valores maiores que um tornam-se menores que zero.



■ Problema de arbitragem financeira: encontrar ciclos direcionados (circuitos)

Algorithm 4 Algoritmo de Ford-Moore-Bellman.

- 1: Inicialize dist[s]=0 e dist[v]=∞ para os outros vértices
- 2: **para** i = 1 até n **faça**
- 3: Relaxe todos os arcos
- 4: fim para

Proposição

O algoritmo Ford-Moore-Bellman determina a árvore de caminhos mínimos a partir de s para grafos livres de ciclos negativos.

- ldeia da prova: Após a *i*-ésima iteração, os caminhos mínimos de comprimento *i* (ou menores) já estão determinados.
- Observação: Se o valor de dist[v] não mudar durante a iteração i, então não é necessário relaxar nenhuma aresta partindo de v na iteração i+1.

32/35

Exemplo I

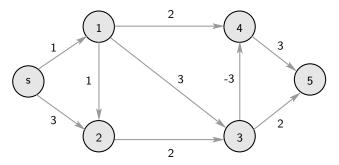


Figura 11: Grafo exemplo para aplicar Bellman-Ford.

Exemplo II

- Ordem na qual as arestas são relaxadas: (1,4), (s,1), (4,5), (3,4), (3,5), (2,3), (1,3), (1,2), (s,2).
- Resultado (d=dist, p=prev):

it	0		1		2		3		4	
nó	d	р	d	р	d	р	d	р	d	р
S	0	_	0	_	0	_	0	_	0	_
1	∞	?	1	S	1	S	1	S	1	S
2	∞	?	2	1	2	1	2	1	2	1
3	∞	?	4	1	4	1	4	1	4	1
4	∞	?	∞	?	1	3	1	3	1	3
5	0 8 8 8 8 8	?	∞	?	6	4	4	4	4	4

■ Observação: a solução não é única (pode-se trocar o arco (1,3) pelo (2,3) e obter uma outra árvore de caminhos mínimos com os mesmos custos).

Detecção de ciclos negativos

- Se existir um ciclo negativo no grafo, o algoritmo de Bellman-Ford-Moore entrará em um loop infinito, atualizando sequencialmente *dist[v]* para todos os vértices *v* pertencentes ao ciclo negativo.
- Proposta de detecção de ciclo negativo: se dist[v] para algum vértice v é atualizado na última iteração (n), então existe um ciclo negativo. O vetor prev[v] pode ser utilizado para encontrá-lo.

Referências I

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.

Network flows: theory, algorithms, and applications.

Prentice-Hall, Upper Saddle River, NJ, 1993.

P. Feofiloff.

Algoritmos para grafos em C via sedgewick.

http://www.ime.usp.br/~pf/algoritmos_para_grafos/index.html.

Acessado: Setembro de 2016.

M. C. Goldbarg and H. P. L. Luna.

Otimização combinatória e programação linear – Modelos e Algoritmos.

Elsevier, Rio de Janeiro, RJ, 2 edition, 2005.

R. Sedgewick and K. Wayne.

Algorithms.

Pearson Education, Boston, MA, 4 edition, 2011.